Программируемые логические матричные структуры
2.9.
Программируемые логические матричные структуры
Реализация Булевых функций с помощью матричных схем. Матричные схемы представляют собой сетку ортогональных проводников, на местах пересечения которых установлены элементы односторонней проводимости (ЭОП) (диоды, транзисторы). Матричные схемы бывают 2-х и 3-х уровневые. Каждый уровень называется матрицей. Матрица первого уровня называется матрицей М1, матрица второго уровня - М2. Обычно матрица М1 реализует элементарные конъюнкции и называется матрицей конъюнкций, а матрица М2 - матрицей дизъюнкций, т.к. позволяет реализовать дизъюнкции переменных. Рассмотрим двухуровневую матричную схему (рис. 2.26).
![]() Рис. 2.26. Функциональная схема матрицы М1:S=3;q=4 Количество входов матрицы М1 равно S, т.е. Х1, Х2, . .. , Xs, количество выходов матрицы М2 равно t, т.е. Y1, Y2, . . , Yt. Буквой Р обозначаются промежуточные проводники, перпендикулярные (ортогональные) проводникам Х и У. Количество ортогональных проводников равно q. Функциональная схема матрицы М1 представлена на рис. 2.27. Рассматриваемая матрица может реализовать четыре конъюнкции, по числу ортогональных проводников: Р1 = Х3 Х2 ![]() ![]() ![]() ![]() В общем случае, если какие-либо ортогональные проводники не участвуют в реализации конъюнкций, их число может быть меньше q.
![]() Рис. 2.27. Функциональная схема матрицы М1:S=3;q=4 Реализация необходимых конъюнкций осуществляется путем прожига перемычек (включенных последовательно с полупроводниковым диодом), расположенных на местах пересечения ортогональных проводников, не участвующих в образовании конъюнкций. Следует отметить, что в исходном состоянии на всех пересечениях проводников матрицы М1 имеются соединения, т.е. матрица реализует все конъюнкции переменных, причем в каждую конъюнкцию входят все переменные и с отрицанием, и без. Очевидно, что такие конъюнкции логического смысла не имеют. Для получения необходимых конъюнкций следует прожигать все легкоплавкие перемычки, находящиеся на узлах, не участвующих в конъюнкциях. На схеме (рис. 2.27) рассматриваемой матрицы М1 крестиками обозначены узлы, на которых сохранены перемычки. Рассмотрим процесс реализации конъюнкции на примере P1 = Х3Х2 ![]() Схема матрицы дизъюнкции М2 содержит сопротивления нагрузки и транзисторные ключевые соединители (на местах пересечений ортогональных проводников). На рис. 2.28 приведена схема матрицы М2 для двух выходов ( количество проводников Р одинаково для М1 и М2 и в данном примере q = 4).
![]() Рис. 2.28. Матрица дизъюнкций М2 Матрица М2, приведенная на рис.1, реализует две дизъюнкции:
![]()
Объем информации, который можно записать в матричную схему, определяется как информационная площадь матриц, вернее суммой Sm1 и Sm2. Sm = Sm1 +Sm2 = 2Sq + qt. На практике часто встречаются схемы, состоящие из матриц М2 и дешифратора (полного). Такие схемы обычно называют постоянными запоминающими устройствами (ПЗУ). ПЗУ - это элемент (устройство) памяти, позволяющий хранить записанную в нем информацию, и после выключения напряжения источника питания. По способу записи ПЗУ подразделяются на масочные, программируемые и репрограммируемые. Масочные ПЗУ программируются заводом изготовителем с помощью специальных масок, т.е. соединения на местах пересечения ортогональных проводников заложены в технологию производства ПЗУ. Программируемые ПЗУ (ППЗУ). ППЗУ выпускаются заводом-изготовителем в "чистом виде", т.е. по всем адресам записаны"0". Программирование ППЗУ осуществляется пользователем ППЗУ на специальной установке, называемой программатором. В ППЗУ можно записать (его программировать) информацию только один раз. Изменить записанную информацию или исправить ее нельзя. ППЗУ нашли широкое применение в ЭВМ для хранения запускающих программ. Они обладают большим быстродействием, чем репрограммируемые ПЗУ (РПЗУ). Репрограммируемые ПЗУ позволяют, при необходимости, перепрограммировать ПЗУ, т.е. стереть ранее записанную информацию и записать новую. По способу стирания ранее записанной информации РПЗУ бывают с ультрафиолетовым (ультрафиолетовыми лучами) и электрическим стиранием. РПЗУ позволяют десятки (некоторые до 1000) раз перепрограммировать и сохранять записанную информацию десятки и сотни тысяч часов. Быстродействие РПЗУ несколько хуже быстродействия ППЗУ. Независимо от типа и способа стирания ПЗУ имеют структуру, приведенную на рис. 2.29.
![]() Рис.2.29. Структурная схема постоянного запоминающего устройства Структурная схема ПЗУ содержит дешифратор на S входов и 2S -выходов, а также матрицу М2. Информационная емкость ПЗУ определяется как Sпзу = 2S, где S- количество входов X. В этом определении емкости (объема) памяти не учтено количество выходов Y(t). Обычно число t бывает 4, 8, и 16 (полубайтовая, байтовая и двухбайтовая организация памяти). "Битовая" емкость ПЗУ определяется как Sпзу (бит) = 2S t (бит). Промышленностью выпускаются ПЗУ с объемом памяти (информационной емкостью) на 2 кбайт, 4 кбайт,16 кбайт,32 кбайт и т.д., где к=1024; 1байт=8бит.
![]() Рис. 2.30. Схемное обозначение РПЗУ К573РФ2, К573РФ5 с ультрафиолетовым стиранием: А - адресные входы; D – информационные выходы. Uce – вход подачи напряжения записи (в режиме хранения на этот вход подается Ucc); Ucc – вывод для подачи напряжения питания. СЕ и ОЕ –входы управления состоянием выводов, если СЕ=ОЕ=1, входы D имеют высокоимпедансное состояние. При СЕ=ОЕ=0 вывод информации разрешен. Микросхема РПЗУ К573РФ2 (РФ5) имеет одиннадцатиразрядный дешифратор, выходы которого соединены с восьмиразрядной матрицей М2. В процессе записи выходные элементы РПЗУ находятся в режиме приема информации через выводы D0 . . . D7 (на входе “ОЕ“ уровень “1”). В режиме считывания записанной информации выводы “Uce” и “Ucc” объединяются, и на них подается напряжение питания +5В.
|